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Abstract

This paper presents a numerical study of the temperature distribution in a body subjected to a spatially
exponential decaying laser source. The governing heat conduction equation, the boundary conditions and the initial
condition are presented in a dimensionless form as a function of a group of dimensionless parameters, namely, w, t,
Bi, w, c1, c2 and c3: Three di�erent sets of thermal boundary conditions imposed at the ``far'' boundary, including

convection, insulated and constant surface temperature conditions are investigated in the present study. The
governing equation is discretized using a control volume approach, with a variable grid to increase the resolution of
the domain near the boundary where the laser heat source is applied. The e�ects of the di�erent parameters and the

temperature dependent thermal properties are studied in detail. The calculated results are compared with previous
analytical studies for constant thermal properties obtained for both semi-in®nite and ®nite domains. Finally, the
present numerical solutions are compared to existing experimental data. # 2000 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

The use of lasers in material processing has
gained signi®cant attention in the past decade. In

non-reactive processes, the laser beam is used to
modify the target material structure by local heat-
ing. This local heating alters the material crystalline

structure and thus, the electrical, mechanical and
thermal properties. For reliability and consistency, it

is necessary to be able to control e�ectively the
induced structural changes. It is therefore important
to understand and quantify the e�ects of thermal

transport in the ®lm structures. In particular, the
use of laser in machining operations has been stu-
died theoretically and experimentally

[1,2,9,14,15,17,18,20]. An important mechanism,
called ``explosive removal of material'', was observed
by Dabby and Paek [2]. This phenomenon occurs

when a highly localized laser energy beam paints
the exposed surface. A plausible explanation given
by Blackwell [1] was that before phase change

occurs at the surface, the location of the maximum
temperature moves inside the workpiece due to con-
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vective and radiative heat losses from the surface to

the surrounding. Thus, the material under the sur-

face will melt ®rst. If the material expands during

the phase change, explosive material removal could

occur. Blackwell [1] showed that the location of the

maximum temperature moves inside the workpiece

when the Biot number is greater than 0.05 (i.e.,

when there is e�cient cooling at the surface due to

convection). Very recently, Zubair and Chaudhry

[20] discussed the fundamental problem considered

by Blackwell [1], and revisited the problem to

include the general time-dependent laser heat source.

Yilbas and Sami [19] found an analytical solution

for the case where a time-dependent laser heat

source is applied to a semi-in®nite body with insu-

lated exposed surface boundary condition.

It should be noted that all previously published

studies are for the semi-in®nite geometry. This is a

good assumption only when the heat penetration

depth is much smaller than the thickness of the

body. When the body under consideration is very

thin or the laser heating time is relatively large, the

heat penetration depth is no longer small compared

to the body thickness and thus, the analytical sol-

utions provided by all the above-mentioned studies

are not valid. For typical engineering applications

to laser cutting, or laser hardening of metals, the

semi-in®nite body assumption may not be a good

one to make. Laser heating times, depending on the

applications, can be of the order of millisecond to

microsecond, or the equivalent of Fourier's number

(i.e., t, dimensionless time) of the order of 106 to

107 [1,19]. Jen and Gutierrez [8] present an analytical

solution for the ®nite geometry with three di�erent sets

Nomenclature

B dimensionless laser source constant
Bi Biot number
c1 dimensionless coe�cient for the reduced

thermal conductivity k
c2 dimensionless coe�cient for the reduced

heat capacity g
c3 dimensionless coe�cient for the reduced

heat capacity g
Cp heat capacity

I0 reference laser irradiation
h convective heat transfer coe�cient
k thermal conductivity
k1 coe�cient for the thermal conductivity k

k2 coe�cient for the heat capacity Cp

k3 coe�cient for the heat capacity Cp

L length of the body

w� dimensionless length of the body
nx maximum number of nodes
q 000 heat source

q� dimensionless heat source
R surface re¯ectance
T temperature

T0 ambient temperature
T1 free stream temperature
t time
u dimensionless temperature

x spatial variable
w dimensionless energy absorption at surface
[A ] matrix equal to Iÿ ZKDt
[B ] matrix equal to Iÿ �1ÿ Z�KDt
{bn} vector equal to [B ]fugn
{bc} vector associated with Dirichlet boundary

conditions

{binf} vector associated with convection bound-
ary conditions

[I ] identity matrix

[K ] matrix of coe�cients
{Q } vector of heat source

Greek symbols
a thermal di�usivity �a � k0=rCp0 )
b laser source constant

Z weighted factor for time integration
m absorption coe�cient
r density
y temperature rise above the initial tempera-

ture
t dimensionless time (Fourier number)
D increment

w transformed spatial coordinate
wx metric of the transformation
x spatial coordinate

Subscripts
E, W, P values of the variable at nodes E, W and

P, respectively
EP average value of the variable between

nodes E and P
WP average value of the variable between

nodes W and P
1 value of the property at node 1
nx value of the property at node nx

Superscripts
n value of the variable at time n

n� 1 value of the variable at time n� 1
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of thermal boundary conditions, namely constant wall

temperature, insulated and convection, at the ``far''

surface (i.e., surface far away from the laser heat input

surface). They show that the size e�ect plays an im-

portant role in determining the temperature distri-

bution, the maximum temperature and the location of

the maximum temperature inside the workpiece.

Most of the early studies assume constant thermal

properties throughout the domain. However, due to

the high irradiation of the localized laser heat

source, the thermal properties may change signi®-

cantly due to the large temperature gradient near

the laser heat source. Lesnic, et al. [10] solved the

non-linear heat equation for temperature dependent

thermal properties, employing the Kircho� trans-

formation. In their approach, a constant thermal

di�usivity was assumed in order to linearize the

heat equation. This provides a limiting case where

the temperature variations in thermal conductivity

and heat capacity are a similar function of tempera-

ture. To investigate the e�ects of temperature-depen-

dent thermal properties for the general case, a

numerical model has to be used. It should be noted

that the analysis presented in this paper does not

include radiation losses or phase change e�ects. If

these e�ects are to be accounted for, additional

mass and conservation equations have to be solved

[18].

This paper presents a numerical study of the tem-

perature distribution in a body subjected to a spatially

exponential decaying laser source. The governing heat

conduction equation, the boundary conditions and the

initial condition are presented in a dimensionless form

as a function of a group of dimensionless parameters,

namely, w, t, Bi, w, c1, c2 and c3: The governing

equation is discretized using a control volume
approach with a variable grid to increase the resolution

of the domain near the boundary where the laser heat
source is applied. The in¯uence of the di�erent par-
ameters and the temperature dependent thermal prop-

erties on the location and the magnitude of the
maximum temperatures, as well as the local tempera-
ture distribution, are studied in detail. The calculated

results are benchmarked against previous analytical
studies for constant thermal properties obtained for
both semi-in®nite and ®nite domains. Finally, the

present numerical solutions are compared to existing
experimental data.

2. Theoretical analysis

Consider a laser heat source applied at the surface

of a slab as shown in Fig. 1. The laser heat source is
assumed to be decaying exponentially with time and
depth into the slab material.
Allowing for temperature dependent thermal proper-

ties, the governing heat conduction equation with the
laser heat source can be written as follows [1,20]

rCp
@T

@ t
� @

@x

�
k
@T

@x

�
� q 000�x, t� �1�

With reference to Fig. 1(a), the surface to which the

laser heat source is applied (at x � 0� is denoted as the
``near'' boundary. The other surface (at x � L� is
denoted as the ``far'' boundary. In this study, the insu-

lated thermal boundary condition is imposed at the
``far'' boundary, and the convective thermal boundary
condition imposed at the ``near'' boundary. The

boundary conditions can be expressed as follows

Fig. 1. Physical con®guration and mathematical model.
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@T

@x
�0, t� � h

k
�T1 ÿ T�0, t�� � 0 �2�

@T

@x
�L, t� � 0 �3�

The initial condition is assumed equal to the ambient
temperature

T�x, 0� � T0 �4�

For a material that absorbs the laser energy internally,

the heat generation term in Eq. (1) can be modeled as
[20]

q 000 � I0�1ÿ R�g
ÿ
b2t
�
m exp� ÿ mx� �5�

where I0 is a reference laser incident irradiation, R is
the surface re¯ectance, m is the absorption coe�cient

and g�b2t� is the time dependent laser input. This
model assumes no spatial variation of the heat input in
the plane normal to the laser beam and also assumes

that heat di�usion perpendicular to the beam direction
is negligible [1,20].
In most of the early studies, thermal properties were

assumed to be constant. In reality, the large tempera-
ture gradient generated by this intensive laser heat
source could result in signi®cant thermal property vari-
ations. For most engineering materials, temperature-

dependent thermal properties can be modeled as func-
tions of temperature as follows [16]:

k � k0 � k1�Tÿ T0 � �6�

Cp � Cp0 � k2�Tÿ T0 � � k3�Tÿ T0 �2 �7�

Now, if we de®ne y�x, t� as the temperature rise above

the initial temperature

y�x, t� � T�x, t� ÿ T0 �8�

And the following dimensionless parameters are intro-
duced

x � mx t � am2t

Bi � h

k0m
B 2 � b2

am2

w � I0�1ÿ R�
h�T1 ÿ T0 � u � y

I0�1ÿ R�
k0m

�9�

c1 � k1
k0

I0�1ÿ R�
k0m

c2 � k2
Cp0

I0�1ÿ R�
k0m

c3 � k3
Cp0

�
I0�1ÿ R�

k0m

�2

Substituting the above dimensionless parameters into
the governing heat conduction equation, Eq. (1), a
dimensionless equation is obtained:

g
@u

@t
� @

@x

�
k
@u

@x

�
� g�B 2t� exp� ÿ x� �10�

where k � �1� c1u� is the dimensionless thermal con-
ductivity and g � �1� c2u� c3u

2� denotes the dimen-

sionless heat capacity. Note that c1 is the
dimensionless coe�cients of the thermal conductivity
equation and c2 and c3 are the dimensionless coef-

®cients of the heat capacity equation (see Eqs. (6) and
(7), respectively).
It has been demonstrated previously that maximum

temperature gradients, due to the exponential decay in

laser heat absorption into the workpiece, are in a very
thin layer near the wall on the side where the laser is
applied. For this reason, it is convenient to have very

good grid resolution in this zone. In order to achieve
this, a variable grid is used. An algebraic equation is
used to transform the spatial coordinate x [5]

x � 0:1w� 0:90w2 �11�

where w is the transformed spatial coordinate. The
modi®ed Eq. (10)

g
@u

@t
� w2x

@

@w

�
k
@u

@w

�
ÿ 0:18w3xk

@u

@w
� q��w, t� �12�

Here wx is the metric of the transformation given by

wx �
1

0:1� 0:18w
�13�

and q��w, t� � g�B 2t� exp�ÿ�0:1w� 0:90w2�� is the
dimensionless heat generation term.
The ``near'' thermal boundary condition (convec-

tion) can be written in dimensionless form as follows:

wx
@u

@w
�0, t� ÿ Bi

�1� c1u�0, t��u�0, t�

� ÿ 1

�1� c1u�0, t��w �14�

Similarly, the ``far'' thermal boundary condition can
be written in dimensionless form as follows:

@u

@w

ÿ
w�, t

� � 0 �15�

The initial condition can be expressed in dimensionless
form as:
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u�w, 0� � 0 �16�
It is worth noting that if constant thermal properties
are assumed, c1, c2 and c3 will be equal to zero. In this
case, the governing equation becomes linear and ana-

lytical solutions can be obtained [8].
The solution of Eq. (10) can be expressed in the

form

u � f
ÿ
w, t, Bi, w, c1, c2, c3, g�B 2t�

�
�17�

Note that the parameter w only appears in the convec-
tion boundary condition. In general, this parameter is

usually very large and its in¯uence is negligible. It is
important to point out that the solution is strongly
dependent on the laser input pro®le. In the numerical

model the laser input pro®le is easily speci®ed through
the heat source term in the governing equation (i.e.,
Eq. (12)). For a continuously operating laser source of

constant strength, g�B 2t� is equal to one, and the func-
tional form of the solution for a particular Bi becomes

u � f�w, t, c1, c2, c3 � �18�

If our interest is in maximum or surface temperatures
for a given Biot number and a speci®c laser input, the
functional relation is not a function of w and can be

written as:

umax � f�t, c1, c2, c3 �

or

usurf � f�t, c1, c2, c3 � �19�

Another case of interest is the relation between surface
temperature as a function of the Biot number for the

linear case �c1, c2 and c3 are zero). In this case the
functional relation can be written as

u�surf � f�t, Bi� �20�

These cases will be studied in detail.

3. Numerical formulation for the non-linear case

In the numerical analysis presented below, a control-

volume based method is used. As presented by Patan-
kar [13], this method can be formulated to account for
temperature-dependent thermal properties. The formu-

lation is presented in a compact matrix form. In this
formulation the implementation of the boundary con-
dition as well as the method for time integration is per-

formed very easily. In order to maintain second order
accuracy in space, the central di�erence method is used
for the di�usion term as follows:

gp
@u

@t
�

�
w2xk

�
EP

@u

@w
jEP ÿ

�
w2xk

�
WP

@u

@w
jWP

Dw

ÿ 0:18w3xk
uE ÿ uW
2Dw

� q�p �21�

using central di�erences again for the spatial derivative

gp
@u

@t
�

�
w2xk

�
EP
�uE ÿ uP � ÿ

�
w2xk

�
WP
�uP ÿ uW �

Dw2

ÿ 0:9w3xkDw�uE ÿ uW �
Dw2

� q�p �22�

grouping in the following way

@u

@t
�

�
w2xk

�
EP

gpDw2
ÿ
1ÿ 0:9wxk

�
uE

ÿ

0@�w2xk�EP��w2xk�WP

gpDw2

1A
uP

�

�
w2xk

�
WP

gpDw2
ÿ
1� 0:9wxk

�
uW �

q�p
gp

�23�

naming the coe�cients of the nodal temperatures as

follow

KE �

�
w2xk

�
EP

gpDw2
ÿ
1ÿ 0:9wxk

�

KP � ÿ

0@�w2xk�EP��w2xk�WP

gpDw2

1A

KW �

�
w2xk

�
WP

gpDw2
ÿ
1� 0:9wxk

�
QP �

q�p
gp

�24�

a matrix form is obtained

@u

@t
� �K�fug � �Q	 �25�

The more general di�erence scheme for time inte-

gration is given by the following expression:

un�1 � un � �1ÿ Z� _unDt� Z _un�1Dt �26�
where Z is a weighting factor, varying from zero
to unity. The time derivatives may be eliminated by
substituting f _ung � �K �nfung � fQgn and similarly
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f _un�1g � �K �n�1fun�1g � fQgn�1: Now, plugging Eq. (26)
into Eq. (25) and rearranging in a more convenient

form yields�
Iÿ Z�K�n�1Dt

��
un�1

	
� ÿI� �1ÿ Z��K�nDt

�fun g � Dt
�
�1ÿ Z�

� �Q	n�Z�Q	n�1� �27�

By writing

�A�n�1� Iÿ Z�K�n�1Dt �28�

�B�n� I� �1ÿ Z��K�nDt �29�

and

�
QDt

	�n�1
n

�
� �1ÿ Z��Q	nDt� Z

�
Q
	n�1Dt �30�

it is obtained

�A�n�1fugn�1� �B�nfugn��QDt
	�n�1

n

�
�31�

Note that un is known from previous computation (or
from the initial condition if this is the ®rst time step).

Then, the product �B �nfugn can be written as the vector

fbgn� �B�nfugn �32�
The system of algebraic equations to be solved at each

time step is

�A�n�1fugn�1� fbgn��QDt
	�n�1

n

�
�33�

It should be pointed out that the matrix [A ] and the
vector Q Dt are not constant as they are in the linear

case. They are functions of the dimensionless thermal
properties k and g at the current time step. Iterations
are needed at each time step to update the matrix [A ]

and the vector Q Dt until convergence is reached.
After this, we can proceed to the next time step and
repeat the procedure.
For Z � 0:5, the discretized equations are equivalent

to the Crank±Nicholson scheme, and thus, second
order accurate in both time and space and uncon-

Fig. 2. Dimensionless surface temperature vs. Biot number.
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ditionally stable. This scheme will be used through-
out this study.

3.1. Implementation of convection boundary conditions

The convection boundary condition introduces new

terms in the coe�cients An�1
�1, 1�, A

n�1
�1, 2�, B

n�1
�1, 1�, B

n�1
�1, 2� pre-

viously calculated and an additional vector fbinfg
appears in the right-hand side of Eq. (33). This vector

is zero everywhere except at node 1 where the convec-

tion boundary condition is de®ned. Using forward

di�erences for the boundary condition at w � 0 [12]

Table 1

Grid convergence test

w eI� TIIÿTI

TII
� 100 eII� TIIÿTII

TII
� 100 eIII� TIIIÿTII

TII
� 100

nx=100 Dt=0.001 nx=200 Dt=0.0005 nx=400 Dt=0.00025

0 0.41% 0 ÿ0.15%
0.4 0.52% 0 ÿ0.27%
0.8 0.45% 0 ÿ0.23%
1.2 0.31% 0 ÿ0.12%
1.6 0.27% 0 ÿ0.10%
2 0.15% 0 ÿ0.08%

Fig. 3. Temperature pro®le for a positive dimensionless coe�cient c1 associated with thermal conductivity.
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An�1
�1, 1� � An�1

�1, 1� � Z
2Dt Bi wx
Dwgn�1P

�34�

An�1
�1, 2� � 2An�1

�1, 2� �35�

Bn
�1, 1� � Bn

�1, 1� ÿ �1ÿ Z�2Dt Bi wx
DwgnP

�36�

Bn�1
�1, 2� � 2Bn

�1, 2� �37�

b

�
n�1
n

�
inf �1� �

2Dt�kwx �1
wDw

 
�1ÿ Z�
gnP

� Z
gn�1P

!
�38�

3.2. Implementation of insulated boundary conditions

As a consequence of the insulated boundary con-
dition at node nx, using backward di�erences at w � L,
the coe�cients An�1

�nx, nxÿ1� and Bn
�nx, nxÿ1� are changed to

An�1
�nx, nxÿ1� � 2An�1

�nx, nxÿ1�

Bn
�nx, nxÿ1� � 2Bn

�nx, nxÿ1� �39�

Finally, in matrix form we obtain

�A�n�1fugn�1� fbgn��QDt
	�n�1

n

�
�b
�
n�1
n

�
inf �40�

where the coe�cients of the vectors �A��n�1�, fbg�n�,
fQDtg�

n�1
n � and fbinfg�

n�1
n � are as described previously.

3.3. Convergence test

The solution of the system given by Eq. (40) is

obtained iteratively. Matrix [A ] is evaluated based on
the temperatures at the iteration n� 1: Since tempera-
tures at the advanced iteration step are unknown,

matrix [A ] is initially computed based on the tempera-
ture at the current iteration. Eq. (40) can then be
solved to obtain an updated value for temperature.
This procedure is repeated until convergence. Di�er-

Fig. 4. Temperature distributions for constant laser heat source temperature pro®le for a negative dimensionless coe�cient c1 as-

sociated with thermal conductivity.
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ences in maximum temperatures were used to check
this convergence. The error e between two maximum
temperatures corresponding to consecutive iterations n

and nÿ 1 are de®ned as:

e �
��Tmax, n ÿ Tmax, nÿ1

��
Tmax, n

� 100%

This error must be less than the speci®ed tolerance. In

this study the tolerance was set equal to 1%. To test
grid convergence, the time step Dt and the number of
nodes in the space coordinate w was was re®ned from
(0.001, 100) to (0.00025, 400). It can be seen from

Table 1 that the maximum error was less than 0.5%.
This test was run for t � 0:1 and Biot number equal to
5. From numerical experiments, the grid convergence

is seen to be only weakly dependent on the Biot num-
ber and the value of t is the more exigent condition
from the convergence point of view. Based on the grid

convergence test, a time step size of 0.0005 and 200
nodes were used for the calculations presented in this
work.

4. Results and discussions

In the numerical study presented here, a constant

heat source has been assumed �g�B 2w� � 1). The pri-
mary interest in this work is in the e�ect of non-linear-

ity due to temperature dependent thermal properties.
Fig. 2 shows the relation between surface temperatures

and Biot number for the linear case (i.e., c1, c2 and c3
are zero and xmax � 1� for di�erent dimensionless
times. It is seen from the ®gure that the e�ect of

increasing Biot numbers above 10 give a small tem-

perature reduction (less than 10%) at the surface. This
is because the heat di�usion rate approaches a limiting

value as the Biot number becomes larger at the ``near''

boundary. For Biot numbers of this order, a reduction
of surface temperature by approximately 60% is seen

for t � 0:1 compared to the insulated surface condition
case �Bi � 0). In the following parametric studies,

unless stated otherwise, a Biot number equal to 5 has

been used. Increasing Biot number beyond a value of 5
results in a marginal reduction in maximum tempera-

ture. Physically, this means that the increased cost as-

sociated with increasing cooling at the boundary is not
o�set by a reduced maximum temperature.

Fig. 5. E�ect of coe�cient c1 at the surface temperature.
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In the sections that follow, the e�ect of non-linearity

due to temperature dependent thermal property, as

represented by the dimensionless coe�cients c1, c2 and

c3, is analyzed in detail. Figs. 3 and 4 show the e�ect

of the coe�cient c1 (associated with thermal conduc-

tivity), for a Biot number equal to 5 and c1 � 30 and

c1 � ÿ15, respectively. These values of c1 are represen-

tative typical engineering materials (noting that nega-

tive c1 values are valid only for limited ranges of

temperature since thermal conductivity cannot become

negative). In these ®gures, dashed lines with triangular

symbols represent the case with variable thermal prop-

erties (non-linear case) and solid lines with square sym-

bols denote the case of constant thermal properties

(linear case). In Fig. 3, the parameters are

c1 � 30, c2 � 0, and c3 � 0: Since c1 is greater than

zero, the thermal conductivity increases as temperature

increases. From the ®gure, it is observed that surface

temperatures for the linear case are lower than for the

non-linear case, although the maximum temperatures

present in the slab are higher for the constant thermal

property case. This can be explained as follows: when

the laser heat source starts to act on the material, the

heating process starts. A large temperature gradient is

generated in the vicinity of the ``near'' boundary. For
the non-linear cases, this, in turn, increases the local

thermal conductivity at the wall. Therefore, the ther-
mal conduction resistance inside the solid slab becomes
smaller, thus the convection resistance at the ``near''

boundary becomes larger. As one would expect, the
surface temperature for the non-linear cases is thus lar-
ger than for the linear cases. It is instructive to point

out the signi®cant role of the non-linearity at the
``near'' boundary where a convection boundary con-
dition is imposed. If we carefully examine this dimen-

sionless ``near'' boundary condition, given by Eq. (14),
a modi®ed Biot number can be de®ned as follows:

Bi, m � Bi

�1� c1u� � �41�

When the temperature increases, this modi®ed Biot
number, Bi, m decreases due to the positive value of
the coe�cient c1: This implies that less heat is con-
vected away from the ``near'' boundary (i.e., smaller

Biot number). This explains why surface temperature
for the non-linear cases is larger than the linear cases,
even though the resulting thermal conductivity is

Fig. 6. E�ect of coe�cient c1 on the maximum temperature.
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higher for the nonlinear cases. For maximum tempera-

tures, the lower temperatures for the nonlinear cases
are simply because the thermal conductivity is greater

for positive c1 values.
Fig. 4 shows the case for a negative c1: In this ®gure,

the parameters are c1 � ÿ15, c2 � 0 and c3 � 0: Since
c1 is less than zero, thermal conductivity decreases as
temperature increases. In comparison to the cases with

positive c1, the results are dramatically di�erent. Since
thermal conductivity decreases with temperature, maxi-

mum temperatures are higher for the non-linear cases,
as seen in Fig. 4. However, surface temperatures are

higher for the linear cases. These trends are opposite
to that for the positive c1 case. This can be explained
by revisiting Eq. (41). The modi®ed Biot number, Bi,

m, increases as the surface temperature increases. This
is due to the negative value of the coe�cient c1, as

seen in the numerator of Eq. (41). It is observed from
Fig. 4 that the surface temperature approaches a limit-
ing value as time increases. This is because, for increas-

ing time (increasing temperatures) the heat di�usion
rate may reach its limiting value when the modi®ed

Biot numbers increase in value at the ``near'' boundary
due to the negative value of c1: Thus, maximum tem-

peratures have to increase because less heat can be

removed from the ``near'' boundary and further heat
penetration into the material is hindered by the lower

thermal conductivity. In this case, the e�ect of variable
thermal conductivity contributes to a more e�cient
explosive removal of material. Blackwell [1] gave an

explanation for this phenomenon. He explained that as
the material attains its maximum temperature, the

phase change occurs inside the body instead of the
exposed surface and the resulting material expansion

produces the explosive removal.
Figs. 5 and 6 depict the e�ect of coe�cient c1 on the

surface and maximum temperatures respectively. The
Biot number is 5. The c1 values were chosen to vary
from ÿ15 to 60, a very wide range representative of

most of the typical engineering materials from plastics
to metals. In Fig. 5, it is seen that for larger negative

values of c1, the surface temperature approaches a lim-
iting temperature as time increases. For increasing
positive values of c1, the curves become ¯atter because

the temperature gradients decrease and temperature
pro®les becomes more uniform. For a given time level,

the surface temperature approaches a limiting value
for increasing values of c1: This is because as c1

Fig. 7. Temperature pro®le for a positive dimensionless coe�cient c2 associated with heat capacity.
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increases, the modi®ed Biot number approaches zero,

i.e. the insulated boundary condition. Fig. 6 shows the
maximum temperatures for various c1 values at di�er-

ent times. For ®xed time, it can be seen that maximum
temperature decreases for increasing c1, to an asymp-

totic value. The behavior at large of c1 is a re¯ection
of the fact that heat di�usion at the ``near'' boundary

reaches its limiting value.

The non-linear e�ect of heat capacity on tempera-
ture distribution is shown in Fig. 7. In order to clearly

demonstrate the e�ect of heat capacity, the value of c1
is set zero. The temperature-dependent heat capacity is

represented by the coe�cients c2 and c3: In most of

the parametric studies investigated (not shown), it is
observed that the e�ect of c3 is relatively unimportant

in comparison to c2: Thus, in the presentation below,
the discussion is concentrated on the e�ect of coef-

®cient c2: Dashed lines with triangular symbols rep-
resent the case with variable thermal properties and

solid lines with square symbols denote the case with
constant thermal properties. It is seen from the ®gure

that, as one would expect, the temperatures for the
variable heat capacity cases are smaller than for con-

stant heat capacity cases. This is because the heat ca-

pacity increases for increasing temperatures �c2 is
positive). More energy is required to raise the tempera-

ture of the body. If we examine the governing equation
for this particular case (i.e., k = constant), by dividing
the temperature dependent thermal capacity for both

side, i.e.,

@T

@ t
� k

rCp

@ 2T

@x 2
� q 000�x, t�

rCp
�42�

We can see from this equation that the thermal di�u-
sivity and the heat source intensity decreases as the

temperature increases. Thus, this results in a decrease
in temperature for variable thermal capacity cases
Figs. 8 and 9 depict the surface and maximum tem-

perature as a function of c2 with c1 and c3 set equal to
zero. In these cases, for increasing c2, both surface and
maximum temperature decreases. This can be

explained again from Eq. (42) as mentioned above. It
is worth noting that unlike the situation with c1, c2
does not play any role in the convection boundary
condition.

A speci®c case study simulating an actual material
has been performed and presented in Fig. 10. The ma-

Fig. 8. E�ect of coe�cient c2 on the surface temperature.
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terial chosen is a sheet of polymethyl methacrylate

(PMMA) of 1 mm thickness. The properties of the ma-

terial are as follows: k0 � 0:19 W/(m K), r � 1180 kg/

m3, Cp � 1500 J/(kg K), m � 5� 104 mÿ1, softening

temperature 400 K, and glass transition temperature

378 K. The time of application of the laser beam is

10ÿ3 s. The intensity of the source is I0�1ÿ R� �
3� 107 W/m2. Under this condition the maximum x is

50 �5� 104 mÿ1 � 10ÿ3 m). However, it is observed in

numerical experimentation that for x > 5, the solution

coincides with the analytical solution for the semi-in®-

nite domain given by Blackwell [1], at least during the

time of application of the laser beam. This means that,

for a thickness of 1 mm, the far boundary condition is

not felt at all and a value of x � 5 can be used in the

numerical computation. Values of k1=k0 � ÿ10ÿ3 Kÿ1

and k2=Cp0 � 3� 10ÿ3 Kÿ1 are assumed [3]. A heat

transfer coe�cient of 3000 W/(m2 K) is used (note that

a heat transfer coe�cient of this magnitude can be

obtained, for example, with an air gas jet velocity of

300 m/s). With these values, the calculated dimension-

less parameters are t � 0:27, Bi � 0:316, c1 � ÿ3:16
and c2 � 9:48: From Fig. 10 it is seen that the maxi-

mum dimensionless temperature for the non-linear case

is 0.125 (624 K, higher than the softening temperature)

for t � 0:27 and occurs at x � 0:15, that is, at 3 mm
from the wall. Due to the thermal expansion e�ect, an

explosive removal of material could occur. From Fig.

10, it is seen that the e�ect of coe�cient c2 is dominant

and the non-linear model predicts lower temperatures

even though the coe�cient c1 is negative. In contrast

to this, if a linear analysis is performed, the predicted

Table 2

Thermal properties of the material used in the computation

Material k0 (W/(m K)) k1=k0 (Kÿ1) Cp0 (J/(kg K)) k2=Cp0 (Kÿ1)

PMMA 0.19 ÿ10ÿ3 1500 3� 10ÿ3

Stainless steel 15.1 9:7� 10ÿ4 480 3:75� 10ÿ4

Fig. 9. E�ect of coe�cient c2 on the maximum temperature.
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temperatures are usually higher and the explosive ma-
terial removal will not necessarily occur.

To further verify the model predictions, the present
numerical solution is compared with the existing exper-
imental data from Yilbas [18]. In Yilbas' work, an Nd

YAG laser with output energy of 15±30 J at 1.2±2.7
ms pulses was employed to irradiate a 1 mm thick
stainless steel sheet. Stainless steel thermal properties

used in the analysis are obtained from Incropera and
Dewitt [7] (i.e., k0 � 15:1 J/(m K), r � 8055 kg mÿ3,
and Cp0 � 480 J/(kg K)). The absorption constant, m,
is chosen to be 107 mÿ1 [1]. The re¯ectivity for the
stainless steel changes from 0.1 to 0.3, thus an average
value is used, i.e., R � 0:80 [11].
The temperature dependent thermal properties used

in the computation of Figs. 10 and 11 are approxi-
mated using the following ®tted equations:

k � k0�1� k1=k0y� Cp � Cp0

ÿ
1� k2=Cp0y

�
where k0, k1, Cp0 and k2 are given in Table 2.
Yilbas [18] measured the workpiece temperature

using two photodetectors. The laser heating time is of

the order of 50 ms and the data were sampled at 5 ms

intervals. Two data sets, corresponding to 0:4� 1011

and 0:6� 1011 W/m2, were presented from their exper-

iment. These results are compared to the present nu-
merical model as shown in Fig. 11. It can be seen that
the agreement with the experimental data is reasonably

good for the linear case except for the lower laser
intensity input case (i.e., I0 � 0:4� 1011 W/m2). It is
seen that better agreement is observed for the non-lin-

ear cases for both intensities except at smaller time.
This may be due to the reason that at smaller time the
parabolic heat conduction equation may not be valid,

and a hyperbolic heat conduction (HHC) model may
be more appropriate [4,6]. Furthermore, the e�ects of
ablation of the material [18] and the experimental
uncertainty may also contribute to the discrepancies.

5. Conclusions

A numerical study of temperature distribution sub-
ject to a laser heat source is presented. At the ``near''
boundary condition, a convection thermal boundary
condition was imposed. A numerical code based on

Crank±Nicholson scheme is developed to study the

Fig. 10. Case study: sheet of polymethyl methacrylate (PMMA) of 1 mm.
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e�ects of temperature dependent thermal properties.

The e�ects of non-linearity are studied through the

dimensionless coe�cients c1 associated with thermal

conductivity and c2 and c3 associated with heat ca-

pacity of the materials. For positive c1, the surface

temperature increases and the maximum temperature

decreases in comparison to the linear case. For nega-

tive c1 the e�ect is reversed. The e�ect of a positive c2
is to decrease temperatures because more energy is

needed to increase the temperature of the body for

increasing heat capacity coe�cient. At high tempera-

tures the e�ect of non-linearity is more apparent and

cannot be neglected. The temperature pro®le can

change its shape and magnitude depending on the rela-

tive importance of coe�cient c1 (associated with ther-

mal conductivity) and coe�cient c2 and c3 (associated

with heat capacity).

Comparison with experimental data shows better

predictions for higher temperatures, as one would

expect. The relatively good agreement between the

model that has been developed and experimental data

indicates that a one-dimensional conduction model can

predict reasonably well the temperature distribution in

the material.
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